Mechanistic Insights into DME Conversion over ZSM-5 Catalysts

By:Admin

Mechanistic insights into the conversion of dimethyl ether over ZSM-5 catalysts : a combined temperature-programmed surface reaction and microkinetic modelling study  - WRAP: Warwick Research Archive Portal
and Dimethyl Ether (DME)

ZSM-5 catalysts play a significant role in the conversion of dimethyl ether (DME) to olefins. This reaction is an important step in the production of valuable chemical compounds. However, the mechanism of this transformation has been elusive due to the complex nature of the reaction. In a recent study, researchers used temperature-programmed surface reaction experiments and microkinetic modelling to decouple the rates of adsorption, desorption, and surface reaction of DME over fresh and working ZSM-5 catalysts with different Si/Al ratios.

The study yielded important insights into the reaction mechanism. The researchers discovered that propylene is the major olefin formed during the transformation of DME. They also observed site-specific scaling relations between the activation energies of DME desorption and barriers to the formation of methoxymethyl and methyl propenyl ether. Six ensembles of sites were observed, with a maximum of three adsorption/desorption sites and three adsorption/desorption/reaction sites.

Interestingly, the researchers found that barriers were generally higher for working catalysts than fresh catalysts. This could have implications for industrial processes that use ZSM-5 catalysts.

The study’s results were obtained by simulating transient reactor performance through the solving of coupled 1D nonlinear partial differential equations. This accounted for elementary steps during the induction period, based on the methoxymethyl mechanism on the zeolite catalyst, and axial dispersion and convection in the reactor. The activation energies of propylene formation were found to be approximately 200 kJ mol1, which corroborated direct mechanistic proposals.

Overall, this study provides valuable mechanistic insights into the conversion of DME over ZSM-5 catalysts. The researchers’ use of temperature-programmed surface reaction experiments and microkinetic modelling allowed for decoupling the complex rates of the reaction, providing important information about site-specific mechanisms. This information may prove useful for developing more efficient and effective industrial processes that utilize ZSM-5 catalysts.

In conclusion, the study underscores the importance of understanding the mechanistic details of catalytic reactions. By using advanced experimental and modelling techniques, we can gain insights that will allow for the development of more efficient and sustainable industrial processes.

Company News & Blog

What is Dechlorination? Definition and Meaning in Medical Dictionary

Dechlorination: A Vital Step in Water TreatmentDo you know that almost all tap water has a small amount of chlorine in it? Chlorine is necessary to kill harmful bacteria and other contaminants that may be present in water. However, while chlorine is an effective disinfectant, it can also have undesired effects, such as the unpleasant taste and odor of water. This is where dechlorination comes in.Dechlorination is the process of removing chlorine from water. It is typically done by using a dechlorination agent, which neutralizes the chlorine and converts it into chloride. Dechlorination is a crucial step in water treatment, especially for processes that follow disinfection, such as fish farming and aquariums.Dechlorination agents are typically made up of sodium bisulfite or sodium sulfite. These chemicals are added to the water to neutralize excess chlorine, rendering it safe for use. Dechlorination agents are commonly available in liquid and powder form. They are easy to use and very effective in removing chlorine from water.One of the most common uses of dechlorination agents is in swimming pools. Chlorine is used in swimming pools to kill off bacteria and other unwanted contaminants. However, chlorinated water can be harsh on the skin and can cause irritation to swimmers. This is where dechlorination comes in. By using a dechlorination agent, pool water can be converted into safe, non-irritating, and odorless water.Dechlorination agents are also commonly used in the food and beverage industry. Chlorine is often used to disinfect equipment and surfaces where food and beverages are processed and prepared. However, excess chlorine can lead to off-tastes and odors in the final product. Dechlorination agents are used to ensure that the water used in the production process is safe and of high quality.In conclusion, dechlorination is an essential step in the water treatment process. It helps to remove excess chlorine from water, making it safe and pleasant to use. Dechlorination agents are effective, safe, and readily available, and can be used for a wide range of applications, including swimming pools, food and beverage production, and aquariums. If you're looking for a way to make your water safer and better-tasting, consider using a dechlorination agent.

Read More

Versatile Activated Alumina Balls for Dehydration, Purification, and Gas Separation Applications

Activated alumina is a popular and effective catalyst used in a wide range of industries. It is a highly porous and adsorptive material that is commonly used for dehydration, purification and separation of liquids and gases. This versatile material is derived from aluminum oxide and exhibits superior adsorption capabilities, making it an ideal choice for a wide range of applications.The primary applications of activated alumina are in the fields of gas processing and wastewater treatment, where it is used as a catalyst to remove impurities and pollutants from air and water. It is effective in removing dissolved oxygen from water, which helps to prevent corrosion in pipelines and equipment. Additionally, activated alumina is used in the manufacturing of propylene and ethylene, as well as in the production of hydrogen and other gases.Two common grades of activated alumina are AD101 and F200, which are used for different applications. AD101 is a high-quality material that is used for the removal of moisture from gases and liquids. It is highly efficient in removing water from natural gas, air and other process streams, and is widely used in the natural gas industry for dehydration.F200, on the other hand, is a high-surface area activated alumina that is used in the purification of air and gases. It is highly effective in removing impurities such as sulfur, carbon dioxide, and other acidic contaminants that can damage pipelines and equipment. It is also used in the production of hydrogen and other industrial gases.In addition to its use as a catalyst, activated alumina is used in various other industries and applications. It is widely used in the food and beverage industry for the removal of impurities from water and other liquids. It is also used in the production of pharmaceuticals, where it is used to purify and filter drugs and other chemicals.Activated alumina is an essential component in many industrial processes, and its versatility and effectiveness make it an ideal choice for a wide range of applications. Its use as a catalyst in the gas processing and wastewater treatment industries has revolutionized these fields, making them more efficient, effective, and environmentally friendly. For those who are looking for high-quality activated alumina for their industrial processes, it is important to work with a trusted and reliable supplier.

Read More

ZSM-5 Zeolite: A widely used catalyst for hydrocarbon isomerization reactions

Read More

Versatile Applications of Activated Alumina Balls for Dehydration, Purification and Separation of Liquids and Gases

Activated alumina is a versatile material that has gained popularity over the years due to its many applications in various industries. Its unique physical and chemical properties make it an indispensable material for various processes, including dehydration, purification, separation of liquids and gases, and as an Alumina Catalyst.Activated alumina is a highly porous form of aluminum oxide, which is produced by heating aluminum hydroxide at high temperatures in a furnace. The resulting product has a large surface area and pore volume that provides excellent adsorption properties and ion exchange capabilities. As a result, this product is used in a wide range of industrial applications, including water treatment, gas drying, and air purification.One of the most well-known applications of activated alumina is in the dehydration of liquids and gases. In this process, activated alumina is used to remove the water content from a liquid, such as ethanol or gasoline, or from a gas, such as natural gas or compressed air. Activated alumina can do this by adsorbing the water molecules onto its surface, making it an effective desiccant.Another application of activated alumina is in the purification of liquids and gases. In this process, activated alumina is used to remove impurities, such as heavy metals, chlorides, and sulfates, from a liquid or gas stream. This is done by chemically reacting with the impurities and neutralizing them. Activated alumina is often used in water treatment plants, as it can remove fluoride ions from the water.Activated alumina can also be used in the separation of liquids and gases. In this process, activated alumina is used as a molecular sieve to selectively adsorb certain molecules from a gas or liquid stream. This is done by controlling the size of the pores in the activated alumina material to allow only certain molecules to pass through while blocking others.Finally, activated alumina is used as an Alumina Catalyst in many industrial processes. The unique properties of activated alumina make it an excellent catalyst support material, and it is widely used in various catalytic reactions, including the hydrocracking of crude oil, the reforming of gasoline and diesel fuels, and the production of chemicals like hydrogen peroxide.In conclusion, activated alumina is a versatile material that has become a critical component in many industrial applications. Its unique physical and chemical properties make it an effective desiccant, purifier, and molecular sieve, as well as an excellent Alumina Catalyst support material. The ever-evolving industry requirements have led to the development of various grades and types of activated alumina, and suppliers and manufacturers like (need remove brand name) are playing a critical in supplying high-quality products to meet the ever-growing demand for this versatile material.

Read More

Revolutionary Zeolite Catalysts Enhance Eco-friendly Cement Manufacturing Processes

Technology, cleaner cement production, sustainable solutions, environmental impact.In the global push for sustainability, industries are looking for ways to reduce their environmental impact. One of the most polluting sectors is the cement industry, which accounts for approximately 8% of global CO2 emissions. However, thanks to innovative technologies, such as Clariant Catalyst Technology, the industry can now strive for more sustainable solutions.Clariant Catalyst Technology is a zeolite catalyst that improves the combustion process in cement production, resulting in cleaner emissions. This technology effectively reduces the environmental impact of cement production through the reduction of emissions such as NOx, CO, and particulate matter.The revolutionary technology has already been tested in several industrial cement kilns, and the results are promising. The technology has been shown to cut down NOx emissions by up to 70%, CO emissions by up to 60%, and particulate matter by up to 50%, all while maintaining the same level of cement quality. Clariant Catalyst Technology is a sustainable solution to the challenges faced by the cement industry concerning the environment. The technology ensures that the cement industry meets its obligations and makes significant strides in achieving environmental sustainability.Benefits of Clariant Catalyst Technology for Cement Production1. Cleaner EnvironmentThe use of Clariant Catalyst Technology significantly reduces emissions of NOx, CO, and particulate matter in the cement production process. This means that it helps keep the environment clean and healthy for both humans and plants.2. SustainabilityThe technology is a step towards the reduction of the carbon footprint of cement production. This makes it a sustainable solution to the environmental challenges faced by the cement industry.3. EfficiencyThe use of Clariant Catalyst Technology increases the efficiency of the cement production process, which translates to savings in energy costs and other related expenses. This makes the technology an attractive proposition for manufacturers looking to gain a competitive edge in the industry.4. User-friendlyThe technology is easy to install and operate. Cement manufacturers can easily integrate it into their existing systems without disrupting their process flow.Challenges of Implementing Clariant Catalyst Technology1. Initial InvestmentThe initial cost of implementing the technology may be a challenge for some organizations. However, the long-term benefits of the technology in terms of environmental sustainability and cost savings outweigh the initial investment.2. Resistance to ChangeThe implementation of new technology can often be met with resistance from employees who are accustomed to the existing processes. However, with proper training and effective communication, this challenge can be overcome.ConclusionThe cement industry has a significant impact on the environment, and it is therefore essential that the industry looks for sustainable solutions. Clariant Catalyst Technology is a step in the right direction, as it reduces the environmental impact of cement production while maintaining the same level of quality. The technology ensures that the cement industry meets its environmental obligations while maintaining efficiency and profitability. Overall, Clariant Catalyst Technology is a solution that can make a difference in the cement production process and contribute towards a cleaner and healthier environment for future generations. Therefore, adoption of the technology is the way forward for sustainable cement production.

Read More

Versatile Applications of Microspheres in Cementitious Systems, Composites and Polymer Materials

What Are Alumina Microspheres and Their Importance in Various Industries?Alumina Microspheres, also known as Cenospheres, are lightweight, thin-walled, hollow ceramic spheres composed mainly of alumina and silica, and are typically below 300 microns in size. These unique characteristics make them highly effective in a range of industrial applications across multiple industries.The low bulk density and high strength of alumina microspheres are crucial to their success in the manufacturing industry. They are an essential component of cementitious systems, putties, and sealants. In these products, they modify rheology, reduce weight and shrinkage, and improve thermal insulation properties. Because of these benefits, they are also used in composites and other polymer applications, where they reduce resin demand and improve impact resistance and strength.Specialized alumina microsphere grades are used in industries that require rigorous application conditions. For example, refractories and surface coatings utilize industrial-grade microspheres for coating applications. These coatings provide superior heat resistance, making them ideal for use in high-temperature conditions.Several end-user industries use Alumina Microspheres due to their unique properties. The plastics and gel-coats industry uses these microspheres in polyurethane, latex emulsions, PVC, and Epoxy resins. They are also frequently used in oil-well cements, dry-mix adhesives, and mortars.One major advantage of Alumina Microspheres is their ability to reduce weight and shrinkage in cementitious products. This crucial factor allows manufacturers to create lighter, stronger, and more durable products while saving on production costs.In composites, the incorporation of Alumina Microspheres improves the mechanical performance of the final product, and reduces weight and cost. Additionally, they can be used in high-temperature applications because of their superior resistance to heat.In surface coatings, Alumina Microspheres help improve the wear and tear resistance of the final product. Additionally, thermal insulation properties of the coating prevent heat loss from the surface.In summary, Alumina Microspheres offer several unique advantages to manufacturers across numerous industries. Their low bulk density and high strength make them ideal for enhancing the performance of cementitious, composite, and coating products. Their versatility and applicability in various industries make them a valuable resource for manufacturers and end-users alike.

Read More

Thin-walled ceramic spheres with diverse applications: Microspheres

s, Cenospheres, silica, cementitious systems, composites, polymer applications, refractories, surface coatings, plastics, gel-coats, polyurethane, latex emulsions, PVC, epoxy resins, unsaturated polyester resins, dry-mix adhesives, mortars, jointing compounds, oil-well cements.Alumina Microspheres: The Versatile and Effective Solution for a Range of ApplicationsMicrospheres have gained popularity in the market in recent years due to their properties, which make them suitable for a range of applications. One such type of microsphere is the alumina microsphere.Alumina microspheres, also known as ceramic microspheres, are usually spherical in shape and consist of aluminum oxide (Al2O3). They have a low bulk density, high strength, and uniform sphericity, similar to other microspheres. However, the addition of alumina sets them apart in terms of their high-temperature stability and wear resistance.Alumina microspheres are widely used in cementitious systems, sealants, and putties, where they act as a lightweight modifier to improve thermal insulation, reduce weight and shrinkage, and enhance rheology. In composites and other polymer applications, alumina microspheres reduce resin demand, which consequently improves impact resistance and strength.One of the most significant advantages of alumina microspheres is that they can withstand extreme temperatures. Hence, they are useful in refractory applications, where they can be used as a filler and aid in the production of high-temperature-resistant products. Moreover, they work well in surface coatings, where they can enhance the surface finish and provide a smooth texture.Alumina microspheres are also highly effective in plastics and gel-coats, as they enhance mechanical properties and offer unique benefits. Alumina microspheres are used in polyurethane, PVC, latex emulsions, epoxy resins, and unsaturated polyester resins.In the dry-mix adhesive and mortar sector, alumina microspheres are useful in jointing compounds and oil-well cements, offering unmatched stability, consistency, and strength.In addition to their physical properties, alumina microspheres are environmentally friendly and sustainable. They can be recycled and reused, contributing to a circular economy.In conclusion, alumina microspheres are a versatile and effective solution for a range of applications that require high-temperature stability, low bulk density, strength, and uniform sphericity. Their properties make them suitable for use in cementitious systems, composites, polymer applications, refractories, surface coatings, and plastics and gel-coats. They provide unique benefits to these applications, enhancing their performance and improving their physical properties.

Read More

Understanding Alumina: Properties, Uses, and Characteristics

Alumina, also known as aluminum oxide or Al2O3, is a chemical compound with a melting point of approximately 2,000°C and a specific gravity of around 4.0. It is an odorless, tasteless, and non-toxic powder that is white to off-white in color. Alumina is a highly versatile material with a wide range of applications spanning various industries.One of the most important uses of alumina is in the production of aluminum metal. Alumina is refined from bauxite ore through a process called the Bayer process. In this process, the bauxite is crushed, dried, and heated to remove any water and impurities. Then, the alumina is extracted from the resulting solution and refined further to produce high-purity alumina.In addition to its use in aluminum manufacturing, alumina is used in a variety of other applications. For example, it is used as a catalyst in the petrochemical industry to convert crude oil into usable products. It is also used as a refractory material in high-temperature applications such as kilns, furnaces, and blast furnaces.Gamma alumina, in particular, is a highly crystalline form of alumina that is often used as a catalyst support. It has a large surface area and pore volume, which makes it ideal for catalytic reactions. Gamma alumina is also used as a support material in the manufacturing of other chemicals such as ethanol, ethylene, and propylene.Other applications of alumina include the production of abrasives such as sandpaper, grinding wheels, and polishing compounds. It is also used as a filler in plastics, ceramics, and rubber. Alumina is even used as a dental material in the form of dental implants and crowns.Overall, alumina is a highly versatile material with a wide range of applications in various industries. Its properties such as high melting point, hardness, and chemical stability make it a valuable material for many applications. Gamma alumina, in particular, has unique properties that make it ideal for use as a catalyst support. As technology continues to advance, it is likely that alumina will continue to play an important role in many industries.

Read More

Get Quality Activated Alumina for Catalyst Carriers at Low Prices from Professional Manufacturers

Read More

Low-Priced Activated Alumina for Catalyst Carrier in Stock

Activated alumina is a highly porous material that is frequently used to create catalyst carriers. Catalyst carriers are essential components of industrial processes that require chemical reactions to occur quickly and efficiently. Catalyst carriers are used in a wide range of industries, including petrochemicals, pharmaceuticals, and wastewater treatment.Activated alumina is an effective catalyst carrier material because of its high surface area, high porosity, and high surface polarity. The material is made from aluminum oxide and is activated by heating it to high temperatures in the presence of water vapor. This process creates a highly porous material with a large surface area, which is perfect for carrying catalysts.There are many different types of activated alumina available for use as catalyst carriers. Some of the most common types include gamma alumina, eta alumina, and theta alumina. Each type of activated alumina has its own unique properties that make it suited to specific applications.Gamma alumina is the most common type of activated alumina and is often used as a support for catalysts in the petrochemical industry. It has a high surface area and is highly stable, making it an excellent choice for applications that require high temperatures or harsh chemical environments.Eta alumina is another popular type of activated alumina, which has a higher surface area than gamma alumina. It is often used in the pharmaceutical industry as a catalyst carrier for reactions that require high specificity and selectivity.Theta alumina has the highest surface area of any activated alumina and is often used in wastewater treatment. Its high surface area makes it an excellent choice for removing impurities from water, while its high surface polarity makes it effective at removing heavy metals and other contaminants from water.Regardless of the type of activated alumina used, it is essential to choose a high-quality material that is manufactured by a reputable company. CHEMXIN is a leading supplier of activated alumina for catalyst carriers and has a wide selection of high-quality products available for purchase.CHEMXIN's activated alumina products are produced using state-of-the-art manufacturing processes and are rigorously tested to ensure their quality. The company offers a range of activated alumina products that are suitable for use in a variety of catalyst carrier applications, including petrochemicals, pharmaceuticals, and wastewater treatment.In conclusion, activated alumina is an essential material for creating catalyst carriers that are used to promote chemical reactions in various industries. Choosing a high-quality activated alumina product is essential for ensuring the efficiency and productivity of industrial processes. With CHEMXIN's wide selection of high-quality activated alumina products, customers can be confident that they are using the best possible material for their applications.

Read More